제1회 스포츠 심장 연구회 발족 기념 심포지움 Endurance Athlete with CAD 중앙의대 조준환 # **Endurance Athlete with CAD** ### The benefits of exercise in cardiovascular risk - √ Positive impact on atherosclerotic risk factors - ✓ Blood pressure, lipid profile, BMI, and insulin resistance. - ✓ Promotes nitric oxide production from the vascular endothelium - ✓ Improving vasodilatory capacity, vascular homeostasis - ✓ Deactivation of scavenging oxidative species. - √ Stimulates angiogenesis - ✓ Increases tissue oxygen transport - √ Mediate the inflammatory atherosclerotic process - ✓ Inhibits cell adhesion molecules | М | lemo | | | | | | | | | | | |---|------|------|------|--|------|------|------|------|------|------|------| | | | |
 | |
 |
 | |
 |
 | |
 |
 | | |
 |
 |
 | |
 |
 |
 | ## Cardiac adaptation in the master athlete ### < Echocardiographic parameters > | Echocardiography | Endurance
Athletes | Control
Subjects | <i>P</i> Value | |---------------------|-----------------------|---------------------|----------------| | Baseline parameters | n=33 | n=33 | | | Heart volume, mL/kg | 14.2±1.7 | 9.8±1.1 | <0.001 | | LVEDD, mm | 56.4±2.2 | 50.0±4.2 | <0.001 | | RVEDD, mm | 34.1±3.8 | 27.3±4.3 | <0.001 | | IVST, mm | 11.7±0.7 | 10.3±0.8 | <0.001 | | PWT, mm | 10.4±1.1 | 9.2±1.1 | <0.001 | Circulation. 2016;133:1927-1935. ### Coronary artery disease in master athletes Occult coronary artery disease in middle-aged sportsmen with a low cardiovascular risk score (MARC study) ✓ 318 middle-aged male endurance athletes (mean age 54.7 years) | Study | Study size | Training volume/
intensity | Age and sex | LGE vs controls | LGE pattern | |----------------------------------|--|--|-----------------------------|------------------------------|--| | Malek
et al ²² | 30 middle age
athletes vs
10 controls | Active, median 6 y of
ultramarathon
running | 40.9 ± 6.6, 100%
male | 27% vs 10% | Nonischemic (insertion
point—one in control
group, lateral wall) | | Tahir
et al ¹⁹ | 83 athletes vs
36 controls | >3 y of competitions,
>10 h/wk | 43 ± 10 y, 65%
male | 17% male, 0% female vs 0% ns | Nonischemic
(inferolateral, insertion
points) | | McDiarmid
et al ¹⁶ | 30 athletes vs
15 controls | Athletes committing
on regional,
national, or
international level | 31.7 ± 7.7 y,
100% male | 3% vs 0% | Nonischemic
(postmyocarditis
pattern) | | Mordi
et al ¹⁸ | 21 athletes with
depressed LVEF vs
21 controls | >6/h per wk of
intensive aerobic
exercise at an
amateur level | 45.9 ± 10.7 y,
100% male | 9.5% vs 0% | Nonischemic (insertion points) | | Мето | | |------|--| | | | | | | | | | ### **Summary** - √ Moderate intensity exercise is beneficial for cardiovascular disease - ✓ Coronary artery calcification (CAC) scores are high in master athletes - ✓ Calcific plaque is frequent - √ Possible mechanisms - ✓ Prolonged and repetitive mechanical stress - ✓ Increased parathyroid hormone levels - √ The acute pro-inflammatory state - ✓ Exercise intensity but not volume was associated with progression of coronary atherosclerosis # Thank You For Attention CHUNG-ANG UNIVERSITY GWANG-MYEONG HOSPITAL Memo